

□ Scientists now know that there are three particles inside of an atom: *protons*, *electrons* and *neutrons*.

SUBATOMIC PARTICLES

Particle	Mass	Charge	Location
electron	1/1837 amu	•	outside the nucleus
proton	1 amu	+	inside the nucleus
neutron	1 amu	0	inside the nucleus

- \square Amu (atomic mass unit) is the 12th part of the mass of a carbon atom.
- \Box 1 amu = 1.67x10⁻²⁷ kg

CALCULATION OF THE NUMBER OF SUBATOMIC PARTICLES

- We use the periodic table.
- Each element occupies a box:

- In an atom:
 - -The atomic number equals the number of protons and equals the number of electrons.
 - If 20 protons are present in an atom then 20 electrons are there to balance.
 The overall charge of the *atom* is neutral.

-The number of neutrons is found by subtracting the atomic number from the atomic mass number.

Example: Potassium

- Atomic number: <u>19</u>
- Atomic mass number: <u>39</u>
- Number of protons: <u>19</u>
- Number of electrons: <u>19</u>

□ Number of neutrons: <u>20</u>

atomic mass number - atomic number=

$$39 - 19 = 20$$

THE RUTHERFORD-BOHR ATOMIC MODEL

Representation of the atom as a very small nucleus made up of positively charged protons, surrounded by negatively charged electrons moving in defined orbits (also called energy levels or simply shells).

■Ex: Neon

Atomic # 10

Atomic mass # 20

10 electrons distributed like this:

- 2 on the first level
- 8 on the second level

VALENCE ELECTRONS

- ☐ The electrons situated on the last shell are called *valence electrons*.
- ☐ They take part in chemical reactions

